
Audit
Tortuga

Presented by:

OtterSec contact@osec.io

Harrison Green hgarrereyn@osec.io

Fineas Silaghi fedex@osec.io

mailto:contact@osec.io
mailto:hgarrereyn@osec.io
mailto:fedex@osec.io


Contents
01 Executive Summary 2

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-TOR-ADV-00 [med] [resolved] | Minimum Stake Bypass . . . . . . . . . . . . . . . . . . . . . 6
OS-TOR-ADV-01 [med] [resolved] | Validators Manipulating Commission Rates . . . . . . . . . . 7
OS-TOR-ADV-02 [med] [resolved] | Potential Denial Of Service In Pool . . . . . . . . . . . . . . . 9
OS-TOR-ADV-03 [low] [resolved] | Limit Bypass Through Stake Coins Invocation . . . . . . . . . 10

05 General Findings 11
OS-TOR-SUG-00 [resolved] | Validate Tortuga Address . . . . . . . . . . . . . . . . . . . . . . . 12
OS-TOR-SUG-01 [resolved] | Unnecessary Wrapper Function . . . . . . . . . . . . . . . . . . . . 13
OS-TOR-SUG-02 [resolved] | Extract Metadata From Capabilities . . . . . . . . . . . . . . . . . . 14
OS-TOR-SUG-03 [resolved] | Simplify Associated Account Derivation . . . . . . . . . . . . . . . 16

06 TIP Findings 17
OS-TOR-PRO-00 [med] [resolved] | Missing Protocol Commission Check . . . . . . . . . . . . . 18
OS-TOR-PRO-01 [low] [resolved] | Invalid Capability . . . . . . . . . . . . . . . . . . . . . . . . 20

07 Formal Verification 22
OS-TOR-VER-00 | Data Invariant Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Appendices

A Vulnerability Rating Scale 24

© 2023 OtterSec LLC. All Rights Reserved. 1 / 24



01 | Executive Summary

Overview
Tortuga Finance engaged OtterSec to perform an assessment of the liquid-staking-ottersec
program and TIP-1. The audit of the programwas conducted between September 17th and October 7th,
2022. The evaluation of the proposal was conducted between June 1st and June 7th, 2023.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, we worked closely with the team to streamline patches and
confirm remediation. We delivered the final confirmation of the patches on October 16th, 2022 and June
20th, 2023.

Key Findings
Over the course of this audit engagement, we produced 11 findings in total.

In particular, we identified several logical inconsistencies affecting staking limits (OS-TOR-ADV-03, OS-
TOR-PRO-01) and one impacting commission rates (OS-TOR-ADV-01).

We also made recommendations around formal verification and the use of capability resources and
other cases where information follows a “chain of security” to improve security and prevent inaccurate
verification (OS-TOR-SUG-02, OS-TOR-SUG-03).

© 2023 OtterSec LLC. All Rights Reserved. 2 / 24

https://github.com/Tortuga-Finance/tortuga-protocol/pull/9


02 | Scope
The source code of the programwas delivered to us in a git repository at github.com/MoveLabsXYZ/liquid-
staking-ottersec. This audit was performed against commit f2b49ac

The source code of the proposal was shared with us through a pull request at github.com/Tortuga-
Finance/tortuga-protocol/pull/9. This audit was performed against commit 6f05232.

A brief description of the programs is as follows:

Name Description

liquid-staking Liquid staking protocol which allows users to optimally delegate APT to validators
TIP-1 The first Tortuga Improvement Proposal introduces support for the

delegation_poolmodule and addresses several bugs and their fixes.

© 2023 OtterSec LLC. All Rights Reserved. 3 / 24

https://github.com/MoveLabsXYZ/liquid-staking-ottersec
https://github.com/MoveLabsXYZ/liquid-staking-ottersec
https://github.com/MoveLabsXYZ/liquid-staking-ottersec/commit/f2b49acaa5df759695c283618a7fcdd2d84a811a
https://github.com/Tortuga-Finance/tortuga-protocol/pull/9
https://github.com/Tortuga-Finance/tortuga-protocol/pull/9
https://github.com/Tortuga-Finance/tortuga-protocol/pull/9/commits/6f052321c829168664deeb6d836bd7e94bba9167


03 | Findings
Overall, we report 11 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will help mitigate future vulnerabilities.

Severity Count

Critical 0
High 0

Medium 4
Low 2

Informational 5

© 2023 OtterSec LLC. All Rights Reserved. 4 / 24



04 | Vulnerabilities
Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-TOR-ADV-00 Medium Resolved Users may bypass the minimum stake requirement in
delegation_service.

OS-TOR-ADV-01 Medium Resolved Validators maymanipulate their commission rate.

OS-TOR-ADV-02 Medium Resolved unreserved_shares pool in delegation_service
may be filled with fake delegators in certain instances.

OS-TOR-ADV-03 Low Resolved Users may bypass theminimum stake amount limit by invok-
ing stake_coins directly.

© 2023 OtterSec LLC. All Rights Reserved. 5 / 24



Tortuga Audit 04 | Vulnerabilities

OS-TOR-ADV-00 [med] [resolved] | Minimum Stake Bypass

Description

The Tortuga protocol operates on top of the delegation_servicemodule, which controls the pools
and computes rewards for validators and delegators. While most users will delegate indirectly through
Tortuga (stake_router), validators may also receive direct delegations through the
delegation_service API.

Users who wish to delegate directly may invoke delegation_service::delegate and provide an
amount. Internally, this function ensures that the amount providedmeets aminimumdelegation amount,
which is configurable by the pool owner:

MOVE

fun certify_delegation(
managed_pool_address: address,
delegator_address: address,
amount: u64

) ... {
...
assert!(

amount >= managed_stake_pool.min_delegation_amount,
error::invalid_argument(EDELEGATION_AMOUNT_TOO_SMALL)

);
...

}

While this check ensures that the instantaneous delegation amount is above the required minimum,
withdrawals do not impose this limit. Therefore, a user may delegate some amount of stake higher than
min_delegation_amount, then immediately withdraw a large portion to effectively bypass this limit.

Remediation

Impose a restriction on direct delegations such that delegators maintain a minimum delegation amount
at all times or withdraw all their funds.

Patch

Fixed in af0d61f.

© 2023 OtterSec LLC. All Rights Reserved. 6 / 24

https://github.com/Tortuga-Finance/tortuga-protocol/commit/af0d61f8caece83946067a30dab78555660a1731


Tortuga Audit 04 | Vulnerabilities

OS-TOR-ADV-01 [med] [resolved] | Validators Manipulating Commission Rates

Description

Registered validators may receive stake from the protocol or directly from individual delegators. Ei-
ther way, paying a commission set by the validator is necessary. protocol_commissionmust be
smaller than current_commission, and both must be less than or equal to ManagedStakePool’s
max_commission, set by the protocol in delegation_service::initialize. Validators may
drastically increase the commission percentage at any given time, which poses an issue.

RUST

public entry fun change_commission(
pool_owner: &signer,
new_default_commission: u64,
new_protocol_commission: u64,

) acquires ManagedStakePool {
[...]
assert_pool_exists(managed_pool_address);

[...]
assert!(

new_default_commission <= managed_stake_pool.max_commission,
error::invalid_argument(ECOMMISSION_EXCEEDS_MAX)

);
// (Input Assert, keep)
assert!(

new_protocol_commission <= new_default_commission,
error::invalid_argument(EPROTOCOL_COMMISSION_EXCEEDS_DEFAULT)

);

[...]
delegation_state::change_commission_internal(

managed_pool_address,
new_default_commission,
new_protocol_commission,

);
}

This allows a malicious validator to set a very small commission and increase it by a large margin later on.
Since 30-day lockup periods lock the stakes, the validator may profit from a large commission for a long
time.

Remediation

Implement a similar lockup period for commission percentage as implemented for the stake; this avoids
unexpected changes to the commission.

© 2023 OtterSec LLC. All Rights Reserved. 7 / 24



Tortuga Audit 04 | Vulnerabilities

Patch

Fixed in 90cd93e.

© 2023 OtterSec LLC. All Rights Reserved. 8 / 24

https://github.com/Tortuga-Finance/tortuga-protocol/commit/90cd93ead87445677b361fbb04a028ea8e247b1a


Tortuga Audit 04 | Vulnerabilities

OS-TOR-ADV-02 [med] [resolved] | Potential Denial Of Service In Pool

Description

In delegation_service, there is a hard limit on the number of direct delegators a pool may have:
MAX_NUMBER_OF_DELEGATIONS, which currently equals 100.

A malicious user may fill the delegator list with fake delegators, staking small amounts to prevent real
delegators from staking. In conjunction with OS-TOR-PRO-01, an attacker may bypass the
min_delegation_amount and leave dust amounts in the pool, effectively making a free exploit.

Remediation

Ensure that all delegators wishing to stake may stake to maximize efficiency for the validators. A
min_delegation_amount imposed for the lifetime of the delegator’s funds helps ensure that all
delegators are meaningfully contributing to the validator’s total stake. Consider implementing a fix for
OS-TOR-PRO-01 with this issue in mind.

Patch

Fixed in af0d61f.

© 2023 OtterSec LLC. All Rights Reserved. 9 / 24

https://github.com/Tortuga-Finance/tortuga-protocol/commit/af0d61f8caece83946067a30dab78555660a1731


Tortuga Audit 04 | Vulnerabilities

OS-TOR-ADV-03 [low] [resolved] | Limit BypassThroughStakeCoins Invocation

Description

stake_router provides two entry points to stake coins:

• stake_router::stake_coins - Apermissionless stakingendpoint. Takes inCoin<AptosCoin>
and returns Coin<StakedAptosCoin>.

• stake_router::stake - Wrapper over stake_coins. Withdraws coins from the signer, veri-
fies a minimum deposit limit, invokes stake_coins and emits a StakeEvent.

Currently, there exists a minimum stake requirement imposed in stake:

tortuga/sources/stake_router.move MOVE

public entry fun stake(
delegator: &signer,
amount: u64

) ... {
...
assert!(

amount >= staking_status.min_transaction_amount,
error::invalid_argument(EAMOUNT_TOO_SMALL)

);
...

}

However, users may invoke stake_coins directly to bypass this limit.

Patch

Fixed in 2b336d6 by making stake_coins private.

© 2023 OtterSec LLC. All Rights Reserved. 10 / 24

https://github.com/MoveLabsXYZ/liquid-staking-ottersec/commit/2b336d69ccebc991bef7a7292719daf342da2e77#diff-e295a8cb19e44e411e415470e331f2c37e3b8b294d64fe7b809075b8a953ac42


05 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay lead to security issues in the future.

ID Description

OS-TOR-SUG-00 Validate signer against a hard-coded tortuga address in initialization routines.

OS-TOR-SUG-01 get_total_value_locked is unnecessary.

OS-TOR-SUG-02 Extract metadata from capability resources directly.

OS-TOR-SUG-03 Derive associated accounts directly instead of performing auxiliary checks.

© 2023 OtterSec LLC. All Rights Reserved. 11 / 24



Tortuga Audit 05 | General Findings

OS-TOR-SUG-00 [resolved] | Validate Tortuga Address

Description

In stake_router.move, several initialization and setter methods take in tortuga: &signer as a
function parameter. The lack of checks against this parameter may result in vulnerabilities.

tortuga/sources/stake_router.move MOVE

public entry fun set_reward_commission(
tortuga: &signer,
value: u64

) acquires StakingStatus {
let staking_status =

borrow_global_mut<StakingStatus>(signer::address_of(tortuga));↪→

staking_status.reward_commission = value;
}

Remediation

Include a check against the hard-coded @tortuga to ensure the addresses match.

MOVE

assert!(
signer::address_of(tortuga) == @tortuga,
error::unauthenticated(EPERMISSION_DENIED)

);

Patch

Resolved in 5ab8d72.

© 2023 OtterSec LLC. All Rights Reserved. 12 / 24

https://github.com/Tortuga-Finance/tortuga-protocol/commit/5ab8d7208a880b5ed1460f7d034d5e0edceb0f25


Tortuga Audit 05 | General Findings

OS-TOR-SUG-01 [resolved] | Unnecessary Wrapper Function

Description

In stake_router.move, get_total_value_locked simply wraps get_total_worth, which
is unnecessary.

tortuga/sources/stake_router.move MOVE

public fun get_total_value_locked(): u64 acquires StakingStatus {
get_total_worth()

}

Remediation

Remove get_total_value_locked.

Patch

Resolved in ef89a88.

© 2023 OtterSec LLC. All Rights Reserved. 13 / 24

https://github.com/Tortuga-Finance/tortuga-protocol/commit/ef89a88d86ce945133ea9bb393a0af6568871350


Tortuga Audit 05 | General Findings

OS-TOR-SUG-02 [resolved] | Extract Metadata From Capabilities

Description

The Tortuga protocol uses several capability resources to provide access control to various functions. For
example, delegation_service provides a ManageCapability to the protocol when registering
new validators.

However, the current validation of capability resources occurs in a non-canonical way. For example:

delegation/sources/delegation_service.move MOVE

public fun pay_commission_to_owner(
managed_pool_address: address,
manage_cap: &ManageCapability,

): u64 {
assert_pool_exists(managed_pool_address);
assert!(manage_cap.managed_pool_address == managed_pool_address,

error::unauthenticated(EPERMISSION_DENIED));↪→

delegation_state::pay_commission_to_owner(managed_pool_address)
}

In the snippet above, manage_cap contains a managed_pool_address, which it may operate on.
Including this as a second argument and using an assertion to check equality is unnecessary. This pattern
is dangerous as forgetting an assertionmay lead tomishandling the capability (i.e. an attacker may be
able to operate on the wrong pool).

Remediation

Derive any necessary data from the capability resource directly to simplify logic and ensure that the
operation acts on the correct target for the given capability.

The code above could be refactored to:

delegation/sources/delegation_service.move MOVE

public fun pay_commission_to_owner(
manage_cap: &ManageCapability,

): u64 {
assert_pool_exists(manage_cap.managed_pool_address);
delegation_state::pay_commission_to_owner(

manage_cap.managed_pool_address
)

}

© 2023 OtterSec LLC. All Rights Reserved. 14 / 24



Tortuga Audit 05 | General Findings

Patch

Resolved in ef89a88.

© 2023 OtterSec LLC. All Rights Reserved. 15 / 24

https://github.com/Tortuga-Finance/tortuga-protocol/commit/ef89a88d86ce945133ea9bb393a0af6568871350


Tortuga Audit 05 | General Findings

OS-TOR-SUG-03 [resolved] | Simplify Associated Account Derivation

Description

Similar to OS-TOR-SUG-02, sometimes derivation of associated data from the given arguments is possible.
In these cases, it is more canonical to use the derivation directly rather than requiring auxiliary arguments
for the function, which are verified separately. For example:

delegation/sources/delegation_service.move MOVE

public entry fun set_operator(
pool_owner: &signer,
stake_pool_address: address,
new_operator: address

) acquires ManagedStakePool {
let managed_pool_address = signer::address_of(pool_owner);
// (Input Assert, keep)
assert_pool_exists(managed_pool_address);
// (Input Assert, keep)
assert_is_stake_pool_owner(managed_pool_address, stake_pool_address);
let managed_stake_pool = borrow_global<ManagedStakePool>(

managed_pool_address
);
stake::set_operator_with_cap(

&managed_stake_pool.stake_pool_owner_cap,
new_operator

);
}

In this example,stake_pool_addressmaybederived fromtheprovidedmanaged_pool_address;
this is how assert_is_stake_pool_owner is implemented.

Remediation

Derive accounts whenever possible rather than using separate arguments and explicitly verifying condi-
tions inside the function. In this case, omit the stake_pool_address argument and derive it from
the pool_owner.

Patch

Resolved in ef89a88.

© 2023 OtterSec LLC. All Rights Reserved. 16 / 24

https://github.com/Tortuga-Finance/tortuga-protocol/commit/ef89a88d86ce945133ea9bb393a0af6568871350


06 | TIP Findings

Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-TOR-PRO-00 Medium Resolved The lack of commission rate sanitization allows public val-
idators to set commission rates arbitrarily.

OS-TOR-PRO-01 Low Resolved Due to compatibility issues with the latest update, the incor-
rect resource capability is checked for public validators.

© 2023 OtterSec LLC. All Rights Reserved. 17 / 24



Tortuga Audit 06 | TIP Findings

OS-TOR-PRO-00 [med] [resolved] | Missing Protocol Commission Check

Description

Public validators may become an associated validator by signing up through
validator_router::validator_signup. While doing so, validators must provide the commis-
sion rates they charge both the Tortuga protocol and outside validators. However, there is no enforced
commission limit, which means validators may charge more than the maximum, max_commission.
protocol_commission not being sanitized during sign-up is the root issue.

Proof of Concept

The following example demonstrates how a public validator may sign up with a commission rate of 25%,
even if max_commission is set to 20%.

MOVE

#[test(tortuga_governance_deployer = @tortuga_governance, pool_owner = @0x2,
aptos_framework = @aptos_framework)]↪→

#[expected_failure]
fun test_public_validator_cannot_signup_if_commission_too_high(

pool_owner: signer,
tortuga_governance_deployer: signer,
aptos_framework: signer,

) acquires PublicValidators, Status, DelegationAccounts {
account::create_account_for_test(signer::address_of(

&tortuga_governance_deployer ));↪→

initialize_for_test(&tortuga_governance_deployer, 100);
set_allow_self_signup(&tortuga_governance_deployer, true);
set_max_max_commission(&tortuga_governance_deployer, 200000); // 20%

// Set up stake pool for the owner
// The validator commission percentage is 25
test_helpers::test_configure_stake_pool_public_validator(&aptos_framework,

&pool_owner, 0, 10000000, 0, true, true, 2500);↪→

let managed_pool_address = signer::address_of(&pool_owner);
let stake_pool_address = delegation_pool::get_owned_pool_address(

managed_pool_address
);
assert!(stake::get_validator_state(stake_pool_address) ==

VALIDATOR_STATUS_ACTIVE, 0);↪→

// Validator signup should fail as current commission (25%) is greater than max
commission (20%)↪→

validator_signup(&pool_owner, signer::address_of(&pool_owner), 500000, 250000);
}

© 2023 OtterSec LLC. All Rights Reserved. 18 / 24



Tortuga Audit 06 | TIP Findings

Remediation

Ensure that the protocol commission is within the maximum limit.

MOVE

assert!(
protocol_commission == 100 *

delegation_pool::operator_commission_percentage(public_stake_pool_address),↪→

ECOMMISSION_MISMATCH
);

assert!(
protocol_commission <= status.max_max_commission,
error::invalid_argument(EMAX_COMMISSION_TOO_HIGH),

);

Patch

Fixed in 5369c8d.

© 2023 OtterSec LLC. All Rights Reserved. 19 / 24

https://github.com/Tortuga-Finance/tortuga-protocol/pull/9/commits/5369c8dad78a7ffc079338e82f23f0d06e06e0fa


Tortuga Audit 06 | TIP Findings

OS-TOR-PRO-01 [low] [resolved] | Invalid Capability

Description

With the inclusion of the delegation_pool feature, several components require updates to facilitate
its integration. However, validator_router::set_withdraw_signature and
validator_router::verify_withdraw_signature_for_validator are missing the nec-
essary modifications.

When public validators sign up, they must provide their DelegationPoolOwnership capability by
invoking delegation_pool::get_owned_pool_address. However, the current version incor-
rectly assumesaSharesData capability asproof of owningastake_pool, resulting in invalid validator
sign-ups.

Proof of Concept

The following example demonstrates a scenario where a public validator’s account is missing the resource:

MOVE

#[test(
tortuga_governance_deployer = @tortuga_governance,
pool_owner = @0x2,
rando = @0x3,
aptos_framework = @aptos_framework

)]
public entry fun test_set_withdraw_signature_public_validator(

tortuga_governance_deployer: signer,
pool_owner: signer,
aptos_framework: signer,

) acquires Status, DelegationAccounts, WithdrawSignature, PublicValidators {
init_environment_public_validator(&tortuga_governance_deployer, &pool_owner,

&aptos_framework, true);↪→

validator_signup(
&pool_owner,
signer::address_of(&pool_owner),
800000,
0

);
let managed_pool_address = signer::address_of(&pool_owner);
set_withdraw_signature(&tortuga_governance_deployer, managed_pool_address);

let sig = borrow_global<WithdrawSignature>(
@tortuga_governance

);
assert!(sig.managed_pool_address == managed_pool_address, 0);
assert!(

sig.unlocking_at ==
stake::get_lockup_secs(

© 2023 OtterSec LLC. All Rights Reserved. 20 / 24



Tortuga Audit 06 | TIP Findings

delegation_pool::get_owned_pool_address(
managed_pool_address

)
),

0
);

}

Remediation

Introduce a helper function to replace delegation_state::get_stake_pool_address with
support for the delegation_poolmodule.

MOVE

fun get_stake_pool_address(managed_pool_address: address): address acquires
DelegationAccounts {↪→

if (is_an_associated_public_validator(managed_pool_address)) {
delegation_pool::get_owned_pool_address(managed_pool_address)

} else {
delegation_state::get_stake_pool_address(managed_pool_address)

}
}

Patch

Fixed in 5369c8d.

© 2023 OtterSec LLC. All Rights Reserved. 21 / 24

https://github.com/Tortuga-Finance/tortuga-protocol/pull/9/commits/5369c8dad78a7ffc079338e82f23f0d06e06e0fa


07 | Formal Verification

Here we present a discussion about the formal verification of smart contracts. We include example
specifications, recommendations, and general ideas to formalize critical invariants.

ID Description

OS-TOR-VER-00 Formalize data invariants.

© 2023 OtterSec LLC. All Rights Reserved. 22 / 24



Tortuga Audit 07 | Formal Verification

OS-TOR-VER-00 | Data Invariant Specifications
Formal verification may be helpful for maintaining invariants about key structure properties.

stake_router.move RUST

// Struct which holds the current state of the protocol, including the
// storage for the protocol fee.
struct StakingStatus has key {

// Stores the protocol commission collected so far.
protocol_fee: coin::Coin<StakedAptosCoin>,

// The rate at which protocol charges commission.
commission: u64,

// When a user calls `unstake`,
// This amount is taken from the user and
// distributed among all the current users
// of the protocol.
community_rebate: u64,

// Total balance of all the tickets issued since genesis.
total_claims_balance: u128,

// Total balance of all the redeemed tickets since genesis.
total_claims_balance_cleared: u128,

For example, the commission, cooldown_period, and community_rebate fields in
StakingStatusmay be explicitly bounded through a data invariant.

stake_router.move RUST

spec StakingStatus {
invariant cooldown_period <= MAX_COOLDOWN_PERIOD;
invariant commission <= COMMISSION_NORMALIZER;
invariant community_rebate <= MAX_COMMUNITY_REBATE;

}

Especially for feeparameters, formal verificationallows for simple reasoningabout invariantsbyexamining
the specification. For example, the fee will never be greater than 100%.

Apply a similar invariant to the max_commission field in ManagedStakePool.

© 2023 OtterSec LLC. All Rights Reserved. 23 / 24



A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 OtterSec LLC. All Rights Reserved. 24 / 24


	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-TOR-ADV-00 [med] [resolved] | Minimum Stake Bypass
	OS-TOR-ADV-01 [med] [resolved] | Validators Manipulating Commission Rates
	OS-TOR-ADV-02 [med] [resolved] | Potential Denial Of Service In Pool
	OS-TOR-ADV-03 [low] [resolved] | Limit Bypass Through Stake Coins Invocation

	General Findings
	OS-TOR-SUG-00 [resolved] | Validate Tortuga Address
	OS-TOR-SUG-01 [resolved] | Unnecessary Wrapper Function
	OS-TOR-SUG-02 [resolved] | Extract Metadata From Capabilities
	OS-TOR-SUG-03 [resolved] | Simplify Associated Account Derivation

	TIP Findings
	OS-TOR-PRO-00 [med] [resolved] | Missing Protocol Commission Check
	OS-TOR-PRO-01 [low] [resolved] | Invalid Capability

	Formal Verification
	OS-TOR-VER-00 | Data Invariant Specifications

	Appendices
	Vulnerability Rating Scale


