
Tortuga Liquid Staking

Smart Contract Security Assessment

October 21, 2022

Prepared by:

Aaron Esau and Varun Verma

Zellic Inc.

Contents

About Zellic 3

1 Executive Summary 4

2 Introduction 6

2.1 About Tortuga Liquid Staking . 6

2.2 Methodology . 6

2.3 Scope . 7

2.4 Project Overview . 8

2.5 Project Timeline . 8

3 Detailed Findings 9

3.1 Tortuga coin initialization . 9

3.2 Protocol configurations . 10

3.3 Payouts round down . 12

3.4 Centralization risk in minimum delegation amount 13

3.5 Precision loss in reward rate calculation 14

4 Formal Verification 16

4.1 tortuga::stake_router . 16

4.2 helpers::circular_buffer . 17

4.3 tortuga::stakedaptoscoin . 18

4.4 helpers::math . 19

5 Discussion 20

5.1 Evolving nature of Aptos core . 20

Zellic 1 Move Labs

5.2 Griefing . 20

5.3 Simple map griefing . 20

5.4 Integration and composability . 20

5.5 Resource inconsistency . 21

6 Audit Results 22

6.1 Disclaimers . 22

Zellic 2 Move Labs

About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please email us at
hello@zellic.io or contact us on Telegram at https://t.me/zellic_io.

Zellic 3 Move Labs

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io
https://t.me/zellic_io

1 Executive Summary

Zellic conducted an audit for Move Labs from September 7th to September 20th,
2022.

Our general overview of the code is that clarity was only slightly impacted because
of the organization; the relationships between the modules were complicated. The
code coverage is high, and tests are included for the majority of the functions. No
prover specifications were written at the time of the audit. The documentation was
acceptable but could be improved. The code was relatively easy to comprehend.

We applaud Move Labs for their attention to detail and diligence in maintaining high
code quality standards in the development of Tortuga Liquid Staking.

Zellic thoroughly reviewed the Tortuga Liquid Staking codebase to findprotocol-breaking
bugs as defined by the whitepaper and to find any technical issues outlined in the
Methodology section (2.2) of this document.

Specifically, taking into account Tortuga Liquid Staking’s threat model, we focused
heavily on issues caused by rounding or precision errors preventing commissions or
payouts from occurring, locking funds, or enabling griefing attacks.

During our assessment on the scoped Tortuga Liquid Staking contracts, we discov-
ered five findings. Fortunately, no critical issues were found. Of the five findings, two
were of medium severity, two were of low severity, and the remaining finding was
informational in nature.

Additionally, Zellic recorded its notes and observations from the audit for Move Labs’s
benefit in the Discussion section (5) at the end of the document.

Zellic 4 Move Labs

Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 0

Medium 2

Low 2

Informational 1

Medium

Low

Info

Zellic 5 Move Labs

2 Introduction

2.1 About Tortuga Liquid Staking

Tortuga is a liquid staking protocol built on top of the Aptos blockchain. It allows
Aptos users to stake APT coins to help secure the Aptos chain while earning rewards
and maintaining liquidity.

2.2 Methodology

During a security assessment, Zellic works through standard phases of security audit-
ing including both automated testing and manual review. These processes can vary
significantly per engagement, but themajority of the time is spent on a thoroughman-
ual review of the entire scope.

Alongside a variety of open-source tools and analyzers used on an as-needed basis,
Zellic focuses primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. We analyze the scoped smart contract code using automated tools to
quickly sieve out and catch these shallow bugs. Depending on the engagement, we
may also employ sophisticated analyzers such as model checkers, theorem provers,
fuzzers, and so forth as necessary. We also perform a cursory review of the code to
familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We manually review the contract logic to ensure that the code implements the ex-
pected functionality as specified in the platform’s design documents. We also thor-
oughly examine the specifications and designs themselves for inconsistencies, flaws,
and vulnerabilities. This involves use cases that open the opportunity for abuse, such
as flawed tokenomics or share pricing, arbitrage opportunities, and so forth.

Complex integration risks. Several high-profile exploits have not been the result of
any bug within the contract itself; rather, they are an unintended consequence of the
contract’s interaction with the broader DeFi ecosystem. We perform a meticulous
review of all of the contract’s possible external interactions and summarize the asso-
ciated risks: for example, flash loan attacks, oracle pricemanipulation, MEV/sandwich
attacks, and so forth.

Codematurity. We review for possible improvements in the codebase in general. We

Zellic 6 Move Labs

look for violations of industry best practices and guidelines and code quality stan-
dards. We also provide suggestions for possible optimizations, such as gas optimiza-
tion, upgradeability weaknesses, centralization risks, and so forth.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact; we assign it on
a case-by-case basis based on our professional judgment and experience. As one
would expect, both the severity and likelihood of an issue affect its impact; for in-
stance, a highly severe issue’s impact may be attenuated by a very low likelihood. We
assign the following impact ratings (ordered by importance): Critical, High, Medium,
Low, and Informational.

Similarly, Zellic organizes its reports such that the most important findings come first
in the document rather than being ordered on impact alone. Thus, wemay sometimes
emphasize an “Informational” finding higher than a “Low” finding. The key distinction
is that although certain findings may have the same impact rating, their importance
may differ. This varies based on numerous soft factors, such as our clients’ threat
models, their business needs, their project timelines, and so forth. We aim to provide
useful and actionable advice to our partners that consider their long-term goals rather
than simply provide a list of security issues at present.

2.3 Scope

The engagement involved a review of the following targets:

Tortuga Liquid Staking Contracts

Repository https://github.com/MoveLabsXYZ/liquid-staking

Versions fbdb74f1c6835d1780630c82f301fd573d295427

Programs • ./tortuga/sources/math.move
• ./tortuga/sources/delegation_service.move .
• /tortuga/sources/stake_router.move .
• /tortuga/sources/delegation_state.move .
• /tortuga/sources/validator_states.move .
• /tortuga/sources/stake_pool_helpers.move .
• /tortuga/sources/test_helpers.move .
• /tortuga/sources/circular_buffer.move .
• /tortuga/sources/staked_aptos.move .
• /tortuga/sources/validator_router.move

Type Move

Platform Aptos

Zellic 7 Move Labs

https://github.com/MoveLabsXYZ/liquid-staking

2.4 Project Overview

Zellic was contracted to perform a security assessment with two consultants for a
total of four person-weeks. The assessment was conducted over the course of two
calendar weeks.

Contact Information

The following project managers were associated with the engagement:

Jasraj Bedi, Co-founder
jazzy@zellic.io

Stephen Tong, Co-founder
stephen@zellic.io

The following consultants were engaged to conduct the assessment:

Aaron Esau, Engineer
aaron@zellic.io

Varun Verma, Engineer
varun@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

September 7, 2022 Start of primary review period

September 21, 2022 End of primary review period

Zellic 8 Move Labs

mailto:jazzy@zellic.io
mailto:stephen@zellic.io
mailto:aaron@zellic.io
mailto:varun@zellic.io

3 Detailed Findings

3.1 Tortuga coin initialization

• Target: tortuga::initialize_tortuga_liquid_staking

• Category: Coding Mistakes
• Likelihood: Medium

• Severity: Medium
• Impact: Medium

Description

The initialize_tortuga_liquid_staking function calls coin:)initialize to instanti-
ate the Coin resource. However, within the function body of coin:)initialize is an
assertion statement that the creator of the resource matches the deploying package’s
address.

assert!(
coin_address<CoinType>() =) account_addr,
error:)invalid_argument(ECOIN_INFO_ADDRESS_MISMATCH),

);

Impact

Users would not be able to access this function and not deploy their own version of
StakedAptosCoin.

Recommendations

We recommend making this function only accessible for Tortuga’s address.

Remediation

Move Labs fixed this issue in commit ef89a88.

Zellic 9 Move Labs

https://github.com/Tortuga-Finance/tortuga-protocol/commit/ef89a88d86ce945133ea9bb393a0af6568871350

3.2 Protocol configurations

• Target: tortuga::stake_router.move

• Category: Coding Mistakes
• Likelihood: Low

• Severity: Medium
• Impact: Medium

Description

The following setter functions configure the protocol but have no input validation: se
t_min_transaction_amount, set_reward_commission, and set_cooldown_period.

public entry fun set_reward_commission(
tortuga: &signer,
value: u64

) acquires StakingStatus {
let staking_status =
borrow_global_mut<StakingStatus>(signer:)address_of(tortuga));
staking_status.reward_commission = value;

}

public entry fun set_cooldown_period(
tortuga: &signer,
value: u64

) acquires StakingStatus {
let staking_status =
borrow_global_mut<StakingStatus>(signer:)address_of(tortuga));
staking_status.cooldown_period = value;

}

public entry fun set_min_transaction_apt_amount(
tortuga: &signer,
value: u64

) acquires StakingStatus {
let staking_status =
borrow_global_mut<StakingStatus>(signer:)address_of(tortuga));
staking_status.min_transaction_apt_amount = value;

}

Impact

This could pose as a centralization risk and allow impractical configuration values.

Zellic 10 Move Labs

For example, setting theminimum transaction amount too high could inhibit newusers
from entering the protocol, and setting the reward commission too high mistakingly
would inhibit validators frombeing able to acquire reasonable amounts of delegations.

Recommendations

We recommend adding upper bound checks on these functions to allow for a rea-
sonable max threshold.

Remediation

Move Labs fixed this issue in commit ef89a88.

Zellic 11 Move Labs

https://github.com/Tortuga-Finance/tortuga-protocol/commit/ef89a88d86ce945133ea9bb393a0af6568871350

3.3 Payouts round down

• Target: tortuga::delegation_state

• Category: Coding Mistakes
• Likelihood: Medium

• Severity: Low
• Impact: Low

Description

It is possible to perform an economically impractical, griefing-style attack that abuses
the rounding down behavior of mul_div in disperse_all_payouts to ensure only those
with a relatively high number of shares can receive a payout:

let payout_value = math:)mul_div(
delegator_shares_for_payout,
reserve_balance,
reserved_share_supply,

);

If the reserve_balance is low enough, delegators with few shares would receive zero
payout while delegators with many shares would receive some. Dust is refunded to
the reserve at the end of disperse_all_payouts, meaning repeated, quick calls to dis
perse_all_payoutswould result in only high-value delegators getting payouts.

Impact

Malicious, high-value delegators (i.e., those with many shares) could cause lower-
value delegators to not receive any payouts.

Recommendations

A potential solution could be to delay payout until a minimum reserve balance is met.

Remediation

Move Labs fixed this issue in commit ef89a88.

Zellic 12 Move Labs

https://github.com/Tortuga-Finance/tortuga-protocol/commit/ef89a88d86ce945133ea9bb393a0af6568871350

3.4 Centralization risk in minimum delegation amount

• Target: delegation::delegation_service

• Category: Business Logic
• Likelihood: Medium

• Severity: Low
• Impact: Low

Description

The set_min_delegation_amount function allows pool owners to set an arbitrary value
for the minimum delegation amount without any constraints. So, a pool owner could
set the value to the maximum u64, effectively making it impossible for anyone except
the owner or protocol to delegate APT to a managed_stake_pool.

public entry fun set_min_delegation_amount(pool_owner: &signer, value:
u64) acquires ManagedStakePool {
let managed_pool_address = signer:)address_of(pool_owner);
let managed_stake_pool =
borrow_global_mut<ManagedStakePool>(managed_pool_address);
managed_stake_pool.min_delegation_amount = value;

}

Impact

Apool owner could set the value to themaximum u64, effectivelymaking it impossible
for anyone except the owner or protocol to delegate APT to a managed_stake_pool.

Recommendations

Set a hardcoded maximum value for the min_delegation_amount.

Remediation

Move Labs fixed this issue in commit ef89a88.

Zellic 13 Move Labs

https://github.com/Tortuga-Finance/tortuga-protocol/commit/ef89a88d86ce945133ea9bb393a0af6568871350

3.5 Precision loss in reward rate calculation

• Target: oracle::validator_states

• Category: Coding Mistakes
• Likelihood: Informational

• Severity: Informational
• Impact: Informational

Description

When calculating the effective reward rate, the effective_reward_rate function uses
an order of operations that is not ideal; we recommend multiplying before dividing in
cases where there is little risk of overflow to improve calculation precision.

Impact

The effective reward rate may be slightly lower than intended.

Recommendations

Change the order of the following operations:

fun effective_reward_rate(
stats_config: &StatsConfig,
rewards: u128,
balance_at_last_update: u128,
time_delta: u128,

): u128 {
(rewards * stats_config.rate_normalizer / balance_at_last_update) *

stats_config.time_normalizer / time_delta

(rewards * stats_config.rate_normalizer*stats_config.time_normalizer)/
(balance_at_last_update * time_delta)

}

Remediation

In response to this finding, Move Labs noted that:

We have two normalizers just so that we can have double control over preci-
sion. rate_normalizer will be as large as possible that still ensures no overflows

Zellic 14 Move Labs

in the first mul_div. Then time_normalizer could be any other reasonable value
for precision.
Multiplying the normalizers first, as in the recommendation is the same as using
just one normalizer. We are hoping to get additional precision if necessary using
two normalizers.

Zellic 15 Move Labs

4 Formal Verification

TheMOVE prover allows for formal specifications to bewritten onMOVE code, which
can provide guarantees on function behavior.

During the audit period, we provided Move Labs with Move prover specifications, a
form of formal verification. We found the prover to be highly effective at evaluating
the entirety of certain functions’ behavior and recommend theMove Labs team to add
more specifications to their code base.

One of the issues we encountered was that the prover does not support recursive
code yet. We suggest replacing the recursive functions, specifically the math:)pow
functions to a loop form so additional specs can be written on the project.

The following is a sample of the specifications provided.

4.1 tortuga::stake_router

Verifies the result is a multiplication-divide:

spec calc_shares_to_value {
requires t_apt_supply !) 0;
aborts_if t_apt_supply < num_shares;
ensures result <) MAX_U64;
ensures result =) num_shares * total_worth / t_apt_supply;

}

Verifies the following resources are created upon initialization:

spec initialize_tortuga_liquid_staking {
ensures exists<StakedAptosCapabilities>(signer:)address_of(tortuga));
ensures exists<StakingStatus>(signer:)address_of(tortuga));
ensures
exists<validator_router:)Status>(signer:)address_of(tortuga));
ensures
exists<validator_router:)DelegationAccounts>(signer:)address_of(tortuga));

}

Verifies values were mutated:

Zellic 16 Move Labs

spec set_min_transaction_amount {
ensures
borrow_global_mut<StakingStatus>(signer:)address_of(tortuga)).min_transaction_amount
=) value;

}

spec set_cooldown_period {
ensures
borrow_global_mut<StakingStatus>(signer:)address_of(tortuga)).cooldown_period
=) value;

}

spec set_reward_commission {
ensures
borrow_global_mut<StakingStatus>(signer:)address_of(tortuga)).reward_commission
=) value;

}

4.2 helpers::circular_buffer

Verifies the buffer always contains the latest value pushed:

spec push {
ensures len(old(cbuffer.buffer)) < max_length &) cbuffer.last_index +
1 > len(cbuffer.buffer) ==> contains(cbuffer.buffer, value);

}

Verifies the empty function returns an empty buffer:

spec empty {
ensures len(result.buffer) =) 0;
ensures result.last_index =) 0;

}

Verifies the length of cbuffer:

spec length {

Zellic 17 Move Labs

ensures len(cbuffer.buffer) =) result;
}

Verifies borrow_oldest and round_robin behavior:

spec fun helper_round_robin(a: u64, b: u64): u64 {
assert!(b > 0 &) a <) b, error:)invalid_argument(EARITHMETIC_ERROR));
if (a < b) {

a
}
else {

0
}

}
spec round_robin {

aborts_if b > 0 |) a <) b;
}

spec borrow_oldest {
/) Verifies behavior about the borrow_oldest function in
circular_buffer
aborts_if cbuffer.last_index + 1 > len(cbuffer.buffer);
aborts_if len(cbuffer.buffer) =) 0;
let oldest_index = helper_round_robin(cbuffer.last_index +1,
len(cbuffer.buffer));
ensures result =) cbuffer.buffer[oldest_index];

}

4.3 tortuga::stakedaptoscoin

Verifies StakedAptosCoin exists after initialization:

spec register_for_t_apt {
ensures
exists<coin:)CoinStore<StakedAptosCoin>)(signer:)address_of(account));

}

Zellic 18 Move Labs

4.4 helpers::math

Verifies when mul_div aborts and the resulting output:

spec mul_div {
aborts_if c =) 0;
aborts_if a * b / c > MAX_U64;
ensures result <) MAX_U64;

}

Verifies it never aborts, thus actually safe:

spec safe_sub_u128 {
aborts_if false;

}

Zellic 19 Move Labs

5 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment.

5.1 Evolving nature of Aptos core

While the Aptos blockchain prepares for its upcoming mainnet launch in autumn, pe-
riodically breaking changes are introduced to aptos-stdlib and aptos-framework. We
suspect this will continue to occur, even shortly after launch. We recommend the
Tortuga team to stay up to date with any changes that may occur, with a specific at-
tention to the stake.move file in aptos-framework, which governs validator behavior.

5.2 Griefing

Certain aspects of the protocol iterate over data structures, for example in tortuga:)
delegation_state,

while (pool:)num_share_holders(&shares_data.reserved_pool) > 0)

which pose as a danger for gas limit errors. In this particular instance, Tortuga miti-
gated the concern by providing an upperbound of 100 on the number of sharehold-
ers. Nevertheless, gas metrics on Aptos are still relatively unclear, and an amount of
shareholders close to the maximum limit could pose a threat of out of gas errors.

5.3 Simple map griefing

The SimpleMap data structure is susceptible to out of gas concerns, which potentially
could cause an issue if unclaimed_stake_pool_owner_caps gets too large.

Adding a time constraint for an individual to claim their owner cap could mitigate this
risk.

5.4 Integration and composability

To improve the interoperability of the protocol within the Aptos ecosystem, various
methods for accessing resources from other contracts may be beneficial. For exam-

Zellic 20 Move Labs

ple, a getter method on the number of tickets a delegator has could be useful.

One area inwhich the protocol achieved composabilitywas via the following function:

public fun stake_coins(
coins_to_stake: coin:)Coin<AptosCoin>

): coin:)Coin<StakedAptosCoin>

And we believe adding more secure integration pathways could be beneficial to the
success of the protocol.

5.5 Resource inconsistency

Within the code are resources that can be acquired by normal users that should be
ideally only be reserved for admin acquisition only. This does not pose as an imme-
diate security risk, however the getter methods for these resources would not work.

For instance, one could acquire the StakingStatus resource that exists on the publi-
cally available function initialize_tortuga_liquid_staking.

However this following function, which utilizes a getter for this resource

public fun get_total_worth(): u64 acquires StakingStatus {
let staking_status = borrow_global<StakingStatus>(@tortuga);
let unclaimed_balance =

staking_status.total_claims_balance -
staking_status.total_claims_balance_cleared;

validator_router:)get_total_balance() - (unclaimed_balance as u64)
}

acquires the resource strictly from the address of @tortuga, rendering the ability for a
user to have their own StakingStatus resource impractical.

We suggest the initialization functions to be accessible only for the address of @tortu
ga.

Zellic 21 Move Labs

6 Audit Results

At the time of our audit, the codewas not deployed toAptosMainnet as the blockchain
had not been launched yet.

During our audit, we discovered five findings. Of these, two were medium risk, two
were low risk and one was a suggestion (informational). Move Labs acknowledged all
findings and implemented fixes.

6.1 Disclaimers

This assessment does not provide any warranties about finding all possible issues
within its scope; in other words, the evaluation results do not guarantee the absence
of any subsequent issues. Zellic, of course, also cannot make guarantees about any
additional code added to the assessed project after the audit version of our assess-
ment. Furthermore, because a single assessment can never be considered compre-
hensive, we always recommendmultiple independent assessments pairedwith a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code in these recom-
mendations are intended to convey how an issue may be resolved (i.e., the idea), but
they may not be tested or functional code.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic.

Zellic 22 Move Labs

	About Zellic
	Executive Summary
	Introduction
	About Tortuga Liquid Staking
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Tortuga coin initialization
	Protocol configurations
	Payouts round down
	Centralization risk in minimum delegation amount
	Precision loss in reward rate calculation

	Formal Verification
	tortuga::stake_router
	helpers::circular_buffer
	tortuga::stakedaptoscoin
	helpers::math

	Discussion
	Evolving nature of Aptos core
	Griefing
	Simple map griefing
	Integration and composability
	Resource inconsistency

	Audit Results
	Disclaimers

